
Mesoscale/Microscale and CFD Modeling for Wind Resource Assessment: Application to the Andaman Coast of Southern Thailand

Assoc. Prof. Dr. Jompob Waewsak

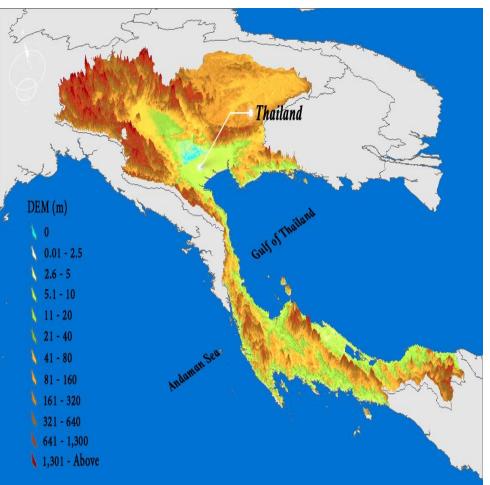
Research Center in Energy and Environment Thaksin University (Phatthalung Campus)

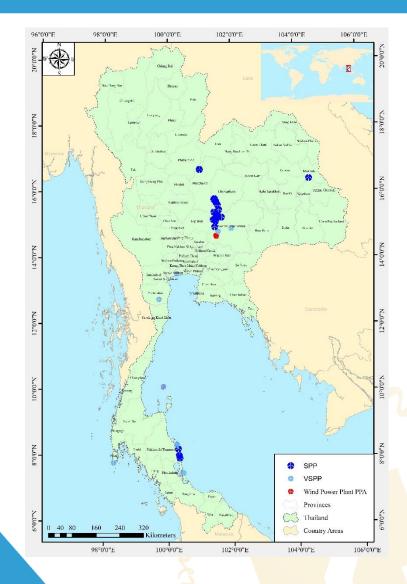
้ ปัญญา จริบธรรม นำการมัฒนา

Topics

Introduction

- □ Since 2004, Thailand has been among the forerunners in Asia in promoting alternative energy development via government policies and investment incentives.
- □ In early 2019, the national Power Development Plan (PDP) and the Alternative Energy Development Plan (AEDP) were approved, marking the continuation of this trend.
- □ Renewable energy in Thailand is projected to be 30% of the total energy production by 2037, jumping from the current 14.5%, with big Thailand state-owned and private-sector conglomerates taking the lead.

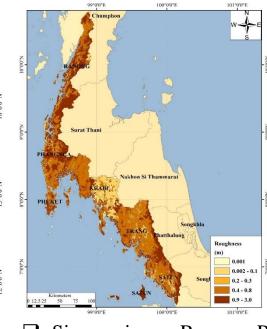

Introduction

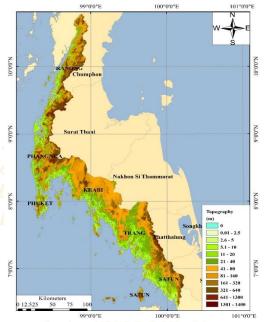

- The Power Development Plan (PDP) is expected to be updated again soon of the 29.4 GW which was allocated to the renewable energy in the latest PDP update early this year, the quota proportions for each type of renewable energy is as follows (including existing and new capacity by 2037):
 - □ Solar: 15,574 MW
 - □ Biomass: 5,786 MW
 - □ Wind: 2,989 MW
 - □ Biogas: 928 MW
 - □ Municipal solid waste: 900 MW
 - □ Industrial waste: 75 MW
 - □ Small hydro: 188 MW
 - □ Large hydro: 2,918 MW

Introduction

Objective

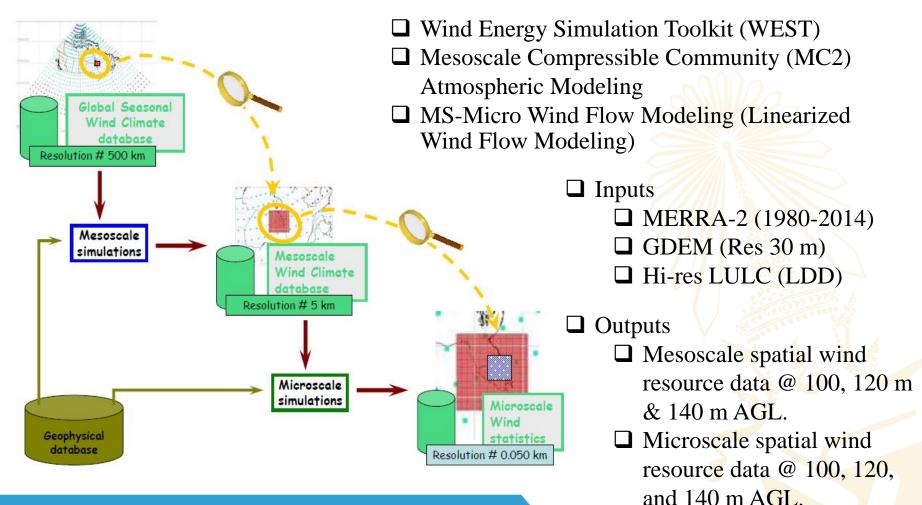
To develop a microscale wind resource map
 spatial resolution of 200 m (200 m × 200 m grids) for low to moderate wind areas and
 spatial resolution of 50 m for the most promising areas of the western coast of Southern Thailand


Methodology

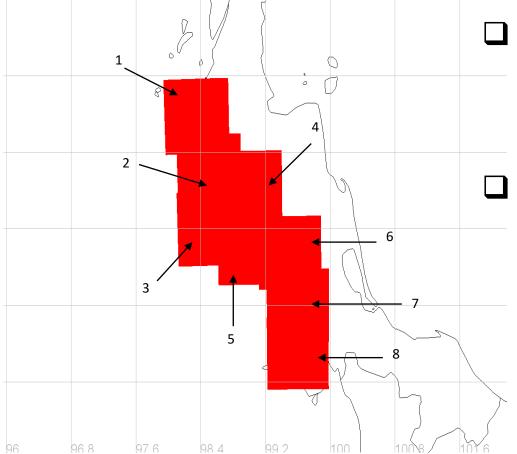

Study Area and Characteristics
Mesoscale/Microscale Modeling
CFD Wind Flow Modeling
Wind Map Validation
WTG Selection (AEP & C.F.)
WTG Parking Optimization

มหาวิทยาลัยทักษิณ THAKSIN UNIVERSITY

Study Area & Characteristics



- Six provinces: Ranong, Phangnga, Phuket, Krabi, Trang and Satun
- □ The total area of 17,689 km² (24% of the area of Southern Thailand)
- Coastal mountains on land and a near shore area dotted with continental islands and barrier islands scattered along the Andaman Coast



Mesoscale/Microscale Modeling

Mesoscale/Microscale Modeling

Mesoscale Modeling
 8 Mesoscale Grids
 20% Grid Overlapping
 Resolution 3 km
 Microscale Modeling
 14 Microscale Grids
 20% Grid Overlapping
 Resolution 200 m

CFD Wind Flow Modeling

Y	1: Terrain extension		~	Terrain
	Coordinate system	Global		2D Field 3D Model Extension ◀ ► 3D Model: Grid (z)
Σ	X-range	769346; 779546		
>	Y-range	1634991; 1645191		*
>	Projection	NONE _WGS_84 0		
4	2: Roughness			
	Roughness height	Read from grid.gws		
Y	3: Numerical model			
	Automatic gridding	False		
	Refinement type	No refinement		
	Height above terrain	Automatic	-	-
	Maximum number of cells	3000000		-
	Height distribution factor	0.1		
	Orthogonalize 3-D grid	False		
	Number of cells in 7 direction	20	~	Fig 1. Digital terrain model - Grid (z

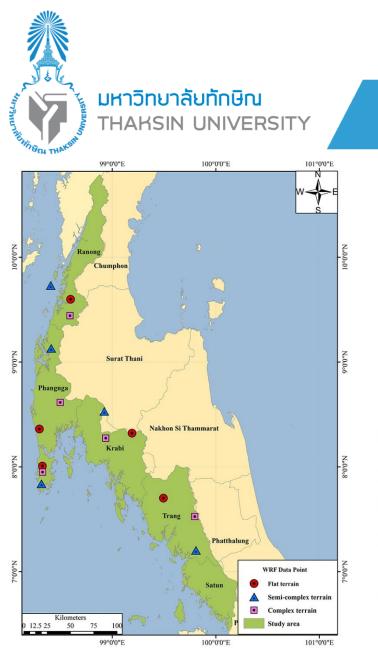
~	4: Smoothing		
	Smoothing type	No smoothing	
~	5: Forest		
	Forest	Disregard forest	22.22
			~

Coordinate system

The coordinate system as defined in the grid.gws file

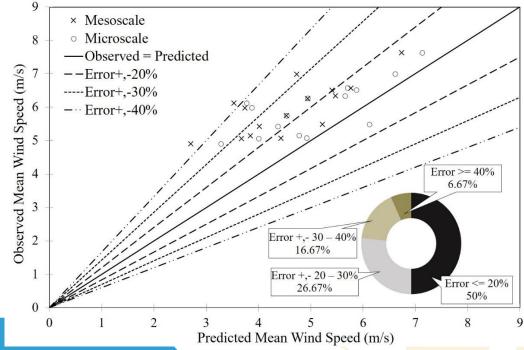
www.tsu.ac.th

	D Model Extension	
3D Mode	el: Grid (z)	
-		
× .		
-		
-		
-		
-		· ·
		-


Properties

×	1: Boundary and initial conditions				
	Do Nesting	Disregard nesting			
	Sector input type	Uniform distribution of the sector angle			
	Number of sectors	16			
	Sectors for next run	0:22:45:67:90:112:135:157:180:202:			
	Height of boundary layer	500			
	Speed above boundary layer he	10			
	Use previous run as input	False			
	Boundary condition at top	Fixed pressure			
~	2: Physical models				
	Potential temperature	Disregard temperature			
	Air density	1.225			
	Turbulence model	Standard k-epsilon			
~	3: Calculation parameters				
*	Solver	GCV	Y		

Sectors for next run


The sector angles [0,359] (deg) for which wind-field data should be generated. Enter the sector angles as a list of numbers, separated by "....

Pro	operties			
	Solver	GCV	-	
	Number of simultaneous sector	1		
	Number of iterations	1000		
	Convergence wizard	False		
	Convergence criteria	0.005		
¥	4: Convergence monitoring			
	Coordinate system	Global		
	Spot value X position	774446		
	Spot value Y position	1640091		
	Spot value Z position	80		
	Field value to monitor	Speed scalar XYZ		
~	5: Output			
	Height of reduced wind databas	300		
	Run in batch mode	False		
			~	

Wind Map Validation

- Comparison of WRF atmospheric modeling (3TIER product)
- □ 3 Terrain Features: Flat, Semi-Complex, and Complex Terrains

<mark>มหาวิทบาลับทักษิณ</mark> THAKSIN UNIVERSITY

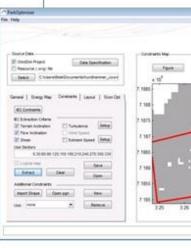
WTG Selection

No.	Wind Turbine Generator Model	Hub Height (m)	Rotor Diameter (m)	Rated Capacity (MW)	Cut-in Speed (m/s)	Rated Speed (m/s)	Cut-out Speed (m/s)
1.	GE 2.5	120	120	2.5	3.0	11.0	21.0
2.	G114	125	114	2.0	3.0	12.5	25.0
3.	GW2.5	120	121	2.5	3.5	11.0	22.0
4.	S111-M90	120	111	2.1	3.0	10.5	21.0
5.	V110-2.0	125	110	2.0	3.0	10.5	20.0

□ Very Small Power Producer (VSPP) <= 10 MW/Power Plant

□ Annual Energy Production (GWh/year)

□ Capacity Factor (%)


□ Wake Loss (%): (1) N.O. Jensen, (2) Larsen, and (3) Ishihara

มหาวิทยาลัยทักษิณ THAKSIN UNIVERSITY

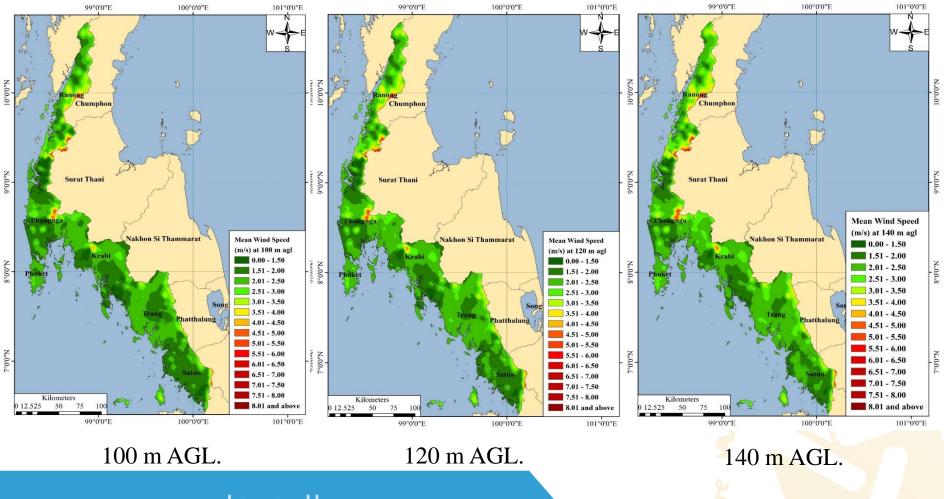
WTG Parking Optimization

PakOptimum		127 10
The Help		
	W	indsim
Source Della 21 Avention Frankel Resource (Long) file Della Specification Sector 2 Concern Reinford Sector Reinford America	Anna May - Tarran Ruthalon (Angreet)	C ParkCatorian File Help
General Energy Hay Constants Layour Econ Opt Posists Devotory 	7189- 7189- 7189- 7189-	Sara (m)
Pasi Ares ment Topps Des Patients	7 100 7 100 7 100	RE Dem RC Crime (2) Terms (2) Terms (2) Terms (3) Terms (3) Terms (4) Terms (4) Terms (4) Terms

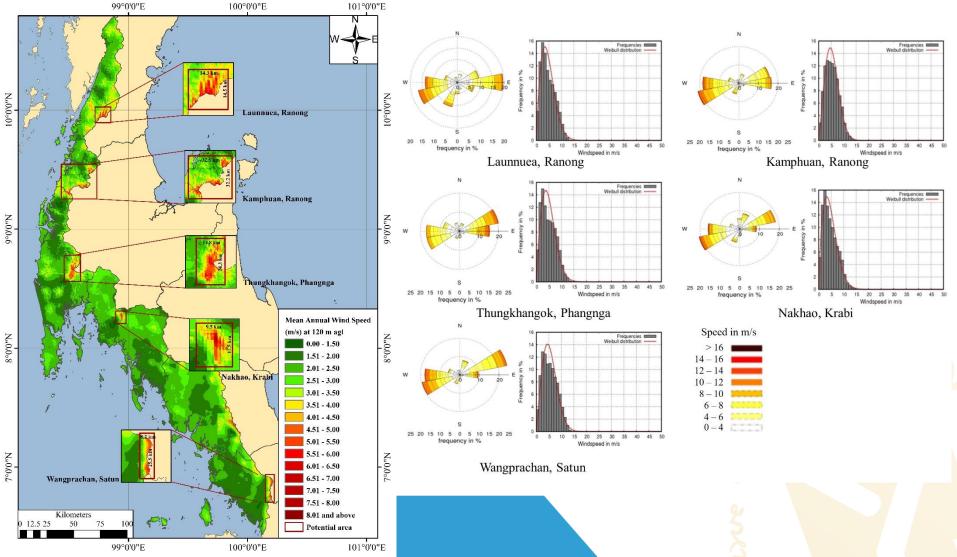
Properties

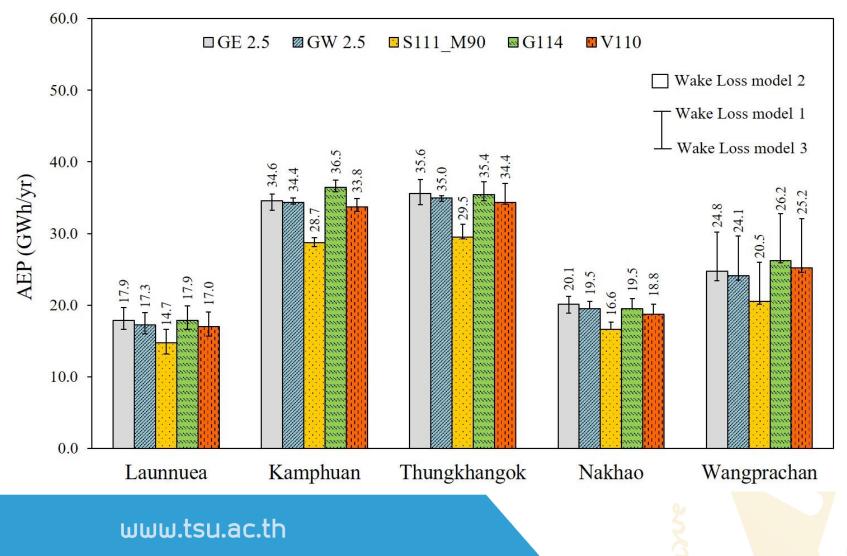
>	Influence range	1; 50			
	Multiple wakes model	Based on sum of squares			
	Heights of reference production	100			
	Activate REWS calculation	False			
	Distance weighting	1			
	Manual weighting	False			
×	2: Export				
	Export power history	True			
	Export weighted power history	True			
	Export rotor profiles	True			
	Export turbine assessment	True			
	Export vertical profiles	True			
¥	3: IEC Classification				
	IEC classification	False			

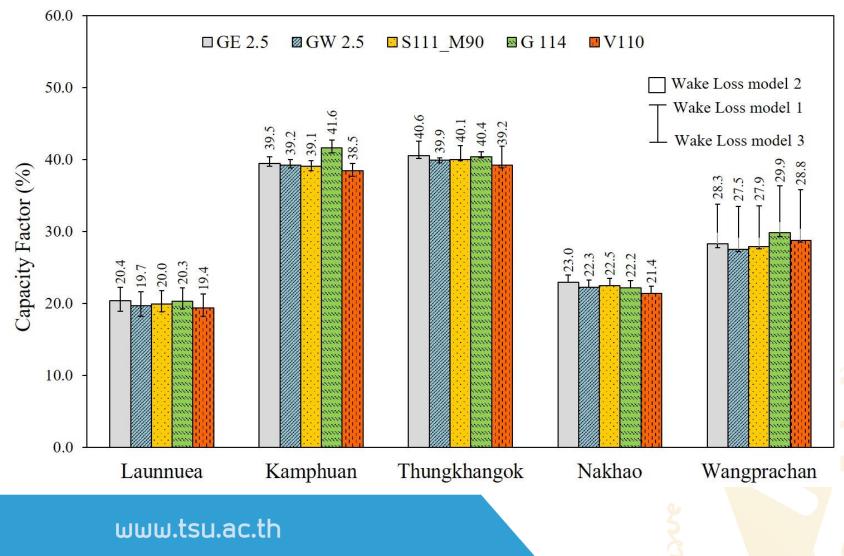
Air density correction

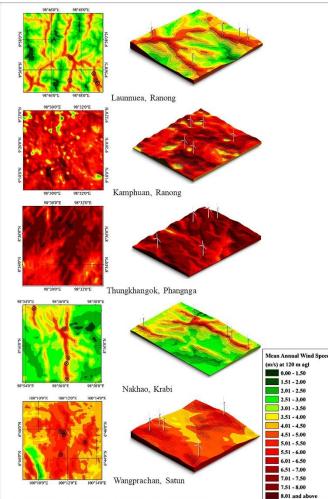

What sort of air density correction should be done?

- The WTG with the highest AEP is then used for WTG parking optimization in order to
 Minimize Wake Loss
 - □ Maximize AEP


Processing output


High Resolution Wind Resource Maps





Conclusion

- □ A wind resource assessment on the Andaman coast of Thailand is executed based on a coupled mesoscale/microscale wind modeling, along with CFD modeling, to assess the wind resource and to estimate the annual energy production of five potential sites for wind power development.
- □ High-resolution microscale wind resource maps have been produced to assess the wind resource on the western coast of southern Thailand, on the Andaman Sea, and covering the provinces of Ranong, Phangnga, Phuket, Krabi, Trang and Satun.
- □ The AEP of sitting optimized wind power plants, including their capacity factors, are also estimated using CFD modeling.
- □ The parameters for the input data included the MERRA wind climatic database, along with high-resolution topography and LULC digital data.
- □ The results show that, at 120 m AGL., the predicted wind speeds from the model proposed are 20% lower for the mesoscale model, and 10% lower for the microscale model, in comparison to the equivalent wind speeds obtained from the WRF model.

Conclusion

- □ Results from the microscale wind resource maps show that the western coast of Thailand is characterized by limited wind resources for power generation.
- □ Nonetheless, localized areas of Launnuea and Kamphuan in Ranong province, Thungkhangok in Phangnga province, Nakhao in Krabi province, as well as Wangprachan in Satun province, have potentials for wind power developments, notably at the small-scale level.
- □ The five potential sites identified for wind power development, using 10 MW VSPP, could attain capacity factors of over 20% for all the five sites identified, while two sites (Thungkhangok and the Kamphuan) could reach capacity factors of 40%.
- □ The annual energy productions for these sites would range from the lowest production (18 GWh/yr in Launnuea; 19 GWh/yr in Nakhao) to the largest production (36 GWh/yr in Kamphuan; 35 GWh/yr in Thungkhangok), with Wangprachan (26 GWh/yr) in the middle range.
- □ The total AEP would be in the vicinity of 135 GWh/yr when using a single wind turbine generator model for the five sites studied.

Acknowledgements

- □ I would like to thank the Department of Alternative Energy Development and Efficiency (DEDE) of Thailand for their kind support of the wind speed data for the wind map validation.
- □ I also thank the Energy Policy and Planning Office (EPPO) and International College, Thaksin University for partial financial support of this work under the framework of the International Graduate Program (IGP).

Publication

L. Niyomtham, C. Lertsathittanakorn, <u>J. Waewsak</u>, and Y. Gagnon, 2022, Mesoscale/Microscale and CFD Modeling for Wind Resource Assessment: Application to the Andaman Coast of Southern Thailand, *Energies* 15, pp. 3025.

Mesoscale/Microscale and CFD Modeling for Wind Resource Assessment: Application to the Andaman Coast of Southern Thailand

Thank You for Your Attention

Assoc. Prof. Dr. Jompob Waewsak

Research Center in Energy and Environment

Thaksin University (Phatthalung Campus)

้ ปัญญา จริบธรรม นำการผัฒนา